

Optimal design and operation of large-scale heat pumps in district heating and cooling systems

Marco Wirtz, Lukas Kivilip, Peter Remmen, Dirk Müller

ECOS Conference, Wrocław, Poland 23.-28. June 2019

Motivation

Decarbonization of heating and cooling

- Key technology: Heat pumps
 - Most **efficient** power-to-heat technology
 - Support integration of renewable energies

- Integration in district heating networks
 - Heat sources: Sea water, ground, air or return line of district cooling network
 - = How does a large-scale heat pump affect the energy system?
 - = Effect on costs and carbon emissions?

Energy system structure

Temperatures exemplary for 2nd Generation District Heating

Methodology

- Objective function:
 - **Total annualized costs**

$$\min C^{\text{TAC}} = \boxed{C^{\text{inv,tot}}} + C^{\text{o\&m}} + C^{\text{el}} + C^{\text{gas}}$$

$$C^{\text{inv,tot}} = \sum_{k} \sum_{i=1}^{N_k} \xi_{k,i} I_{k,i} + C_{\text{netw}}^{\text{inv}}$$

Piece-wise linear approximation

- Objective function:
 - **Total annualized costs**

$$\min C^{\text{TAC}} = \boxed{C^{\text{inv,tot}}} + \boxed{C^{\text{o&m}}} + C^{\text{el}} + C^{\text{gas}}$$

$$C^{\text{inv,tot}} = \sum_{k} \sum_{i=1}^{N_k} \xi_{k,i} I_{k,i} + C_{\text{netw}}^{\text{inv}}$$

$$\boldsymbol{C}^{\text{o\&m}} = \sum_{k} f_{k}^{\text{o\&m}} \, \boldsymbol{C}_{k}^{\text{inv}}$$

O&M as share of investment¹⁾:

8 %

3 %

2.5 %

Compr. chiller

3.5 %

3 %

Gas boiler

Abs. chiller

¹⁾ according VDI 2067

Objective function:

■ Total annualized costs

$$\min C^{\text{TAC}} = \boxed{C^{\text{inv,tot}}} + \boxed{C^{\text{o&m}}} + \boxed{C^{\text{el}}} + C^{\text{gas}}$$

$$C^{\text{inv,tot}} = \sum_{k} \sum_{i=1}^{N_k} \xi_{k,i} I_{k,i} + C_{\text{netw}}^{\text{inv}}$$

$$\boldsymbol{C}^{\text{o\&m}} = \sum_{k} f_{k}^{\text{o\&m}} \, \boldsymbol{C}_{k}^{\text{inv}}$$

$$\frac{\mathbf{P_{el,grid}}}{\mathbf{P_{el,grid}}} \geq \mathbf{P_{el,grid,t}} \quad \forall t \\
\mathbf{P_{el,grid}} \geq \mathbf{P_{el,feed-in,t}} \quad \forall t \\
\mathbf{P_{el,grid}} \geq \mathbf{P_{el,feed-in,t}} \quad \forall t$$
59.7 \frac{EUR}{kW}
0.145 \frac{EUR}{kWh}
0.064 \frac{EUR}{kWh}

Objective function:

■ Total annualized costs

$$\min C^{\text{TAC}} = \boxed{C^{\text{inv,tot}}} + \boxed{C^{\text{o&m}}} + \boxed{C^{\text{el}}} + \boxed{C^{\text{gas}}}$$

$$C^{\text{inv,tot}} = \sum_{k} \sum_{i=1}^{N_k} \xi_{k,i} I_{k,i} + C_{\text{netw}}^{\text{inv}}$$

$$\boldsymbol{C}^{\text{o\&m}} = \sum_{k} f_{k}^{\text{o\&m}} \, \boldsymbol{C}_{k}^{\text{inv}}$$

$$C_{\text{el}} = \overline{P_{\text{el,grid}}} \, p_{\text{el,peak}} + \Delta t \left(\sum_{t} P_{\text{el,grid,}t} \, p_{\text{el,work}} - \sum_{t} P_{\text{el,feed-in,}t} \, p_{\text{el,feed-in}} \right)$$

$$C^{gas} = \overline{G_{grid}} p_{gas,peak} + \Delta t \left(\sum_{t} \dot{G}_{BOI,t} + \sum_{t} \dot{G}_{CHP,t} \right) p_{gas,work}$$

MILP formulation

Constraints:

- Energy balances (losses in the power grid neglected)
- Operation of components: conversion efficiencies, temperature dependencies, e.g.:
 - = Heat pump cannot cover full heat demand (condenser temperature of HP ≤ 90 °C)

Supply scenarios

No heat pump

High temp. network

Low temp. network

Heat pump

 \checkmark

Supply & return temp. heating network

95 – 140 °C

70 °C

60 °C

30 °C

Supply & return temp. cooling network

6°C

12 °C

2nd Gen DH

4th Gen DH

Case study

- Hourly demands for 17 buildings of research campus in Germany
 - Office buildings and laboratories
 - Data centers (building 3 and 4)

Thermal demand

	Total	Peak
Heating	6.4 GWh	2.01 MW
Cooling	10.0 GWh	2.42 MW

73 % of cooling demand results from data centers

Case study

Hourly demands for 17 buildings of research campus in Germany

Optimal design & operation

Performance results

No heat pump

High temp. network

Low temp. network

Total annualized costs	421.2 kEUR/a	396.3 kEUR/a (- 5.9 %)	349.2 kEUR/a (- 17.1 %)
CO ₂ emissions	3879 t/a	2408 t/a (- 38 %)	1853 t/a (- 52 %)
Heating SCOP HP	_	2.73	4.82
SCOP HP (Heating and cooling power as benefit)	_	4.46	8.64

Conclusions

- Large potential for cost and emission savings
- CHP and gas boiler are not replaced completely
 - **CHP** produces power for heat pump at low costs
 - **Gas boiler** needed for peak demands
- Heat pump can be **profitable for high temperature district heating networks** (> 100°C) as well
- **Demand structure** affects profitability (simulteanous heating and cooling demand)
- Outlook:
 - Thermo-hydraulic simulation model for further analysis of operation

23.-28. June 2019

Thank you for your attention. Questions? Inspiration?

Marco Wirtz, M.Sc.

RWTH Aachen University
Institute for Energy Efficient Buildings
and Indoor Climate

marco.wirtz@eonerc.rwth-aachen.de

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 – A Contribution of the Research Field Energy".

Backup

Effect of performance price

Optimal condenser temperature

■ For high temperature network: 90 °C (largest possible)

For low temperature network:

