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Abstract

In order to realize an energy efficient and emission-free heat and cold sup-

ply in urban areas, 5th Generation District Heating and Cooling (5GDHC)

networks are a promising technology. In 5GDHC networks, the control of

the network temperature is crucial since it affects the efficiency of connected

heat pumps and chillers, the heat losses (or gains) of the network, as well as

the integration of waste heat or free cooling. Due to the large number of op-

posing effects, the optimal control of network temperatures is a challenging

task. In this paper, a mixed-integer linear program (MILP) is proposed for

short-term optimization of the network temperature in 5GDHC systems. The

model comprises an air-source heat pump, compression chiller and thermal

storage in a central generation unit as well as heat pumps, chillers, electric

boilers and thermal storages in buildings. Furthermore, the model consid-

ers the thermal inertia of the water mass in the network which functions

as additional thermal storage. The optimization model is real-time capable
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and designed to be deployed in a model-predictive control. In a case study,

the optimization approach leads to cost savings in two of three investigated

months (by 10 % and 60 % respectively) compared to a reference operation

strategy (free floating network temperature).

Keywords:

District heating, District cooling, 5GDHC, Operational optimization,

MILP, Network temperature

1. Introduction

In Europe, 50 % of the final energy consumption results from the heating

and cooling sector [1]. In order to achieve the goals of the Paris agreement,

a fast and effective decarbonization of the heating and cooling sector is cru-

cial. Especially in urban and industrial areas, district heating and cooling

infrastructure is considered a key technology [2]. As of today, most of the

European district heating networks are operated at high temperatures (above

70 ◦C) and supplied by burning fossil fuels [3]. The trend towards lower op-

erating temperatures leads to lower heat losses and enables the integration

of low-temperature heat sources, such as waste heat from data centers [4]

or industry. The latest development stage in this trend are 5th generation

district heating and cooling (5GDHC) networks which are operated at tem-

peratures of 6 – 40 ◦C [5, 6]. At this temperature level, 5GDHC networks

are able to supply buildings with both, heat and cold, making 5GDHC net-

works an ideal technology for the expected rise of cooling demands in the

coming decades [7]. Buildings connected to the network are equipped with

heat pumps which use the network as heat source in order to provide space
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heating or domestic hot water preparation [8, 9, 10]. In recent literature,

5GDHC networks are also referred to as bidirectional low temperature net-

works [11, 12], cold district heating [13], low-temperature district heating and

cooling networks [14, 15] or balanced energy networks [16].

The network temperature has a large impact on the performance of

5GDHC systems [17]. Firstly, the operating temperature affects heat losses

(or gains): A low network temperature minimizes heat losses in winter; high

network temperatures in summer lead to desired heat losses (surplus waste

heat can be dissipated for free). Secondly, the network temperature strongly

affects the coefficient of performance (COP) of heat pumps and chillers in

buildings. For example, heat pumps in buildings are operated at a higher

COP when the network temperature is high. Moreover, the temperatures

of the network affect the operation of chillers in buildings: If the network

temperature is low (e.g. < 16 ◦C), chillers can be bypassed and direct cooling

with the cold pipe of the network is enabled instead. Finally, the possibil-

ity of integrating heat or cold sources, e.g. ambient air, river or sea water,

ground or sewage water, depends on the operating temperature of the net-

work. The aforementioned effects are partially conflicting and, as a result, the

optimization of the network temperature of a 5GDHC system is a challenging

task [18]. Boesten et al. [3] indicate that existing energy hub optimization

concepts need to be enhanced, especially regarding modeling floating tem-

perature levels, and proposes to investigate the optimization of the network

temperatures.

One approach to optimize the operation of 5GDHC network is presented

by Prasanna et al. [19]. They formulate an MILP for an operation optimiza-
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tion of all energy conversion and storage units in the system. However, the

network temperatures are not explicitly modeled or optimized and constant

average COPs for heat pumps in buildings are assumed. Buffa et al. [20]

present a control approach for substations in 5GDHC networks using artificial

neural networks. While this approach improves the operation of substations

in buildings, it does not optimize network temperatures. A review of similar

control applications using artificial neural networks is provided in [21].

Two approaches have been presented in literature that aim at optimizing

network temperatures for 5GDHC networks: Bünning et al. [11] propose a

mathematical relation between the network temperature and the heating and

cooling demands. However, this temperature control strategy is a heuristic

approach which does not account for heat losses of the network, the COP

of connected heat pumps and chillers or temperature thresholds of direct

cooling. The authors of [11] find that the effect of the proposed temperature

control strategy is small and assuming a constant temperature only leads to

a small performance decline.

Gabrielli et al. [22] present a mixed-integer non-linear program for the

operation optimization of the 5GDHC network at ETH Zurich using bilinear

products of mass flow rate and fluid temperature (ṁT ). To cope with the high

computational complexity, they derive an MILP by linearizing the efficiency

curves of the heat pumps and assuming a fixed profile for the mass flow rate.

The low temperature variations in the investigated 5GDHC network allow

replacing the highly non-linear relation between heat output, electric power

and inlet temperature at the evaporator of the heat pump with a bivariate

linear approximation. However, for 5GDHC networks operating with larger
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temperature fluctuations, the linear approximation leads to significant errors

and is therefore not applicable.

A simple yet robust heuristic temperature control approach, called free-

floating temperature control, is described by Blacha et al. [23] and Pass et

al. [24]: The network fluid is heated or cooled by an external supply (e.g.

energy hub) only if the network temperature is about to drop below a lower

or about to exceed an upper temperature limit. For example, if due to a

high heat demand in winter, the temperature of the warm pipe reaches the

lower limit (e.g. 10 ◦C), the energy hub starts to operate and heats the

network in order to prevent a further drop of the network temperature. This

temperature control strategy is robust and straightforward to implement but

does not achieve an optimal system performance since it does not account

for network heat losses or temperature-dependent efficiencies of heat pumps

and chillers.

While for 5GDHC networks, no control approach for optimizing the sys-

tem operation and network temperatures has been presented, the optimiza-

tion of supply temperatures in conventional district heating networks is com-

mon practice and has been extensively investigated in literature. In the fol-

lowing, a brief overview is presented:

Vandermeulen et al. [25] provide a comprehensive review of state-of-the-

art control strategies for conventional district heating systems and how flex-

ibility potentials can be exploited by heat storages as well as the thermal

inertia of buildings and the water mass in the network. However, the review

is limited to conventional district heating and no control stategies applicable

for 5GDHC systems are presented.
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Another comprehensive review of different models suitable for short-term

operational optimization is presented by Bøhm et al. [26] who also focus on

conventional district heating. A non-linear supply temperature optimization

approach is presented and applied to a use case in Germany.

Benonysson et al. [27] formulate a mathematical model for conventional

district heating networks based on the so-called node method. The model

describes all mass flows and temperatures in all pipe segments. However,

pressure states and hydraulic relations are not included in the model which

hinders the calculation of mass flows in a bidirectional 5GDHC network with

undefined flow directions.

Leśko et al. [28] compare two operational optimization approaches, one

topology-based approach and one method based on delay times of the water

flow in the network. In the presented cost optimization, the benefit of using

the thermal inertia of the network is investigated.

Grosswindhager et al. [29] present a fuzzy direct matrix control (fuzzy

DMC) for supply temperatures in district heating networks. They show that

a fuzzy DMC is a suitable approach to handle the inherent non-linearity of

district heating responses.

Merkert et al. [30] propose an MILP for short-term optimization of the

supply temperature of a district heating network. The optimization deter-

mines the point of time when the network is heated up and the corresponding

temperature increase. According to the model, the temperature propagation

wave reaches the buildings after a temporal network delay which is known

a-priori.

Gu et al. [31] propose a mixed-integer non-linear program (MINLP) for
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the control of a district heating network. Assuming constant mass flows in

all pipe segments, the network temperature of every segment is optimized.

The flexibility potential of the thermal inertia of the network and buildings

is used to minimize operational costs and curtailment of renewable energy

sources.

In summary, the aforementioned operational optimization approaches

have been developed for conventional district heating systems in which the

flow direction in each pipe segment is known. In these conventional, uni-

directional networks the supply temperature is used as control variable and

optimized with forecasts of the heat demand or ambient air temperature.

However, these approaches cannot be adapted to networks with undirected

mass flows which occur in bidirectional 5GDHC networks. This paper aims

at closing this gap by presenting an operation optimization model, in form of

an MILP, which optimizes the operation of all energy conversion and storage

units as well as the network temperatures of a 5GDHC system. The contri-

butions of this paper are described in the following Section 1.1 in detail.

1.1. Contributions

In this paper, a novel operation optimization model for 5GDHC networks

is presented. It is designed to be used in a model predictive control (MPC)

as depicted in Fig. 1. The model optimizes the operation of all generation

and storage units of the system as well as the network temperature profile.

The optimization considers the non-linear relation between network temper-

ature and coefficient of performance (COP) of the connected heat pumps

and chillers as well as heat losses and gains of the network. In order to

cope with the non-linear relation between network temperature and COP, a
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novel MILP formulation using binary variables is presented. Unlike previous

studies, the model formulation considers the thermal inertia of the following

three components: Central storage unit (accumulator tank), decentral ther-

mal storages in every building and the water mass in the network. Within a

case study, the following research questions are investigated:

• Which physical effect has the largest impact on the optimal network

temperature?

• To what extent do a central storage unit and the thermal inertia of the

network support the balancing process of heating and cooling demands

in 5GHDC networks?

• Which cost savings are achieved by a temperature optimization model

compared to conventional operation strategies (free floating network

temperature and constant network temperature)?

1.2. Paper organization

The structure of this paper is as follows: In Section 2, the methodology

is introduced. At first, the structure and operating principle of the 5GDHC

system are described. Then, the MILP is presented in detail including all

model assumptions. The use case is introduced in Section 3. The optimal

temperature control strategy is analyzed for three representative months in

Section 4. Section 5 provides final conclusions.

2. Methodology

In the following Section 2.1, the concept of 5GDHC networks is described

and the system structure investigated in this study is explained in more
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Figure 1: Integration of optimization model in system control strategy (model predictive

control).

detail. The MILP is presented in Section 2.2.

2.1. Working principle of 5GDHC networks

5GDHC networks consist of a warm and a cold pipe which are both oper-

ated at temperatures close to the surrounding (6 – 40 ◦C). In each building, a

heat pump raises the temperature to the required supply temperature of the

building’s heating system. Heat pumps use water from the warm network

pipe as heat source in the evaporator. After passing the heat pump, the

cooled down water is discharged to the cold pipe. Buildings with a cooling

demand use water from the cold network pipe as heat sink and discharge

the warmed up water to the warm pipe. Depending on the temperature

requirements of the cooling circuit in the building, chillers or heat exchang-

ers are installed in buildings. With heat exchangers in the building, heat is

directly transferred from the building’s cooling system to thermal network
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(direct cooling). Through the bidirectional network, buildings with cooling

demands supply buildings with heating demands with low temperature waste

heat. In times with an excess of waste heat (or cold), the network is cooled

(or heated) by a central generation unit, e.g. an energy hub (EH). The cen-

tral generation unit ensures that the temperatures of the warm and cold pipe

stay within a defined temperature range. In order to support balancing of

heating and cooling demands between buildings, a thermal storage (accumu-

lator tank, ACC) can be connected to the network [5, 24]. An ACC is a

large water tank which is hydraulically connected at the top with the warm

network pipe and on the bottom with the cold network pipe. For significant

temperature differences between the warm and cold pipe (approx. > 4 K), a

temperature stratification in the tank is observed. As a result, warm water

is located at the top of the tank and cold water at the bottom. The ACC

functions as passive element to balance residual heating and cooling demands

of the network: When the buildings induce a net mass flow from the warm

pipe to the cold pipe (e.g. when on a cold day a large amount of heat pumps

in buildings are operated), mass conservation causes cold water to enter the

tank at the bottom and warm water from the top of the tank flows into the

warm pipe. As a result, the volume of the cold water at the bottom of the

tank increases and the volume of the warm water decreases. In this case, as

long as the water in the ACC is not fully at cold pipe temperature, the ACC

can balance the residual building demands and the EH does not need to be

operated. The ACC operation in a 5GDHC system is further described in

[5].

Fig. 2 shows the energy system structure investigated in this study with an
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EH, ACC and a representative building energy system. The EH comprises an

air source heat pump and compression chiller for balancing residual demands

of the 5GDHC network. For electricity generation photovoltaic modules are

considered. Excess power can be fed into the electricity grid. On the right

hand side of Fig. 2, the building energy system for one exemplary building

is depicted. For covering cooling demands, a compression chiller and a heat

exchanger for direct cooling with the cold pipe of the 5GHDC network is

considered. The condenser of the chiller is hydraulically connected with the

5GDHC network and discharges warmed water to the warm network pipe. If

the network temperature is lower than the supply temperature of the cooling

circuit in the building, the building’s cooling demand is covered with the

heat exchanger (direct cooling). For covering the buildings’ heating demand,

a heat pump connected to the 5GDHC network, an electric boiler as well as

a heat storage are considered.

In this 5GDHC system configuration, the ACC, the network’s water mass

and the decentral storages increase the operation flexibility: The thermal

inertia of the ACC and the network can be used as thermal storage and can

support the balancing of residual heating and cooling demands over time. In

addition, the thermal storages in buildings increase the operational flexibility

of the building energy system.

2.2. Mixed-integer linear program

This section presents the operation optimization model which is adapted

from a design optimization model presented in [32]. Decision variables are

written in italics while model parameters are written in non-italics. All con-

tinuous decision variables are greater or equal to zero, unless otherwise stated.
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Figure 2: Structure of the investigated 5GDHC system with energy hub, accumulator tank

and building energy system.

2.2.1. Objective function

The objective function are the operational costs Cop of the 5GDHC sys-

tem:

Cop = pel,sup

∑
t∈T

Pel,grid,t ∆tt − pel,feed-in

∑
t∈T

Pel,feed-in,t ∆tt (1)

Here, Pel,grid,t denotes the power imported from an external electricity grid

and Pel,feed-in,t excess power that is fed in. pel,sup and pel,feed-in denote the

electricity supply price and feed-in revenue, respectively. ∆tt is the duration

of the respective time step t.

2.2.2. Energy balances

The optimization model comprises four sets of thermal energy balances:

The first set describes the energy balances for every building b and every
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time step t:

Q̇res,BES,b,t = (Q̇HP,b,t − PHP,b,t)

− (Q̇CC,b,t + PCC,b,t)− Q̇DRC,b,t ∀ b ∈ B, t ∈ T
(2)

Q̇res,BES,b,t denotes the residual heating or cooling demand of a building. A

positive residual demand corresponds to a residual heating demand while a

negative residual demand corresponds to a residual cooling demand. The

term (Q̇HP,b,t − PHP,b,t) is the heat to the evaporator of the heat pump and

the term (Q̇CC,b,t + PCC,b,t) the waste heat of the chiller.

The second set of energy balances describe heat flows to and from the

network fluid:

Q̇res,netw,t =
∑
b∈B

(Q̇res,BES,b,t) + Q̇loss,wp,t − Q̇loss,cp,t + Q̇netw,t ∀ t ∈ T (3)

Q̇res,netw,t denote the residual network demand. The heat losses of the warm

and cold pipe (Q̇loss,wp,t and Q̇loss,cp,t) are decision variables since they depend

on the network temperature, see Section 2.2.4. Q̇netw,t describes the thermal

power to raise or lower the network temperature.

The third set of energy balances describe the charging and discharging of

the ACC:

Q̇res,EH,t = Q̇res,netw,t + Q̇ACC,t ∀ t ∈ T (4)

The variable Q̇ACC,t denotes the charging or discharging power of the ACC:

Q̇ACC,t > 0 means water from the warm pipe of the network enters the

ACC and cold water from the bottom of the tank flows into the cold pipe.

Q̇ACC,t < 0 describes the reverse process and, as a result, a decrease of the
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mean ACC temperature. Q̇res,EH,t is the thermal power provided by the EH

to the network. Q̇res,EH,t > 0 means the EH heats the network; Q̇res,EH,t < 0

means the EH cools the network.

The last set of energy balances describe the heat and cold generation by

the air source heat pump (ASHP) and compression chiller (CC) in the EH:

Q̇res,EH,t = Q̇h,ASHP,t − Q̇c,CC,t ∀ t ∈ T (5)

The coefficients of performance of the ASHP and chiller are calculated with

the ambient air temperature for every network temperature prior to the op-

timization.

Additionally, the optimization model comprises electric energy balances.

The electricity demand of the building energy system PBES,b,t is

PBES,b,t = PEB,b,t + PHP,b,t + PCC,b,t ∀ b ∈ B, t ∈ T , (6)

where PEB,b,t, PHP,b,t and PCC,b,t denote the electric power of the electric

boiler, heat pump, and compression chiller, respectively.

The total electricity demand of the system is the sum of all building

electricity demands (PBES,b,t), the electricity demands of the EH (PASHP,t

and PCC,t), and the excess power fed into the electricity grid (Pel,feed-in,t).

The total electricity demand is covered by PV generation (PPV,t) and the

power imported from the grid (Pel,grid,t):

Pel,grid,t + PPV,t =
∑
b∈B

(PBES,b,t) + PASHP,t + PCC,t + Pel,feed-in,t ∀ t ∈ T

(7)

2.2.3. Network temperature intervals

In order to describe the network fluid temperature, three temperature

variables are introduced for every time step t: The temperature of the warm
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pipe (Tnetw,w,t), cold pipe (Tnetw,c,t) and a mean network temperature (T netw,t):

Tnetw,w,t = T netw,t +
∆Tnetw

2
, (8)

Tnetw,c,t = T netw,t −
∆Tnetw

2
∀ t ∈ T (9)

The temperature difference between the warm and cold pipe is assumed con-

stant (∆Tnetw = 8 K, [8]). Network temperatures are limited to a predefined

range [Tmin
netw,c, Tmax

netw,w] with Tmin
netw,c = 6 ◦C and Tmax

netw,w = 40 ◦C [8]. This

range is subdivided into nint discrete temperature intervals [Tlow,k, Tup,k]

∀ k ∈ {0, ..., nint − 1} with constant interval width ∆Tint:

Tup,k = Tmin
netw,c +

∆Tnetw

2
+ (k + 1)∆Tint (10)

Tlow,k = Tmin
netw,c +

∆Tnetw

2
+ k∆Tint (11)

If the mean network temperature is in the interval [Tlow,k, Tup,k], the temper-

ature interval is active and the binary variable θk,t equals 1. The constraint

nint−1∑
k=0

θk,t = 1 ∀ t ∈ T (12)

ensures that exactly 1 interval is active at time step t. A set of disjunctive

inequalities force θk,t to be 1 only if the mean network temperature is in the

corresponding interval [33]. The disjunctive inequalities corresponding to the

temperature intervals are implemented using the convex-hull reformulation

by Jeroslow & Lowe [34]. Consequently, the variable T θk,t is introduced and

forced to take the value of the mean network temperature if the interval k is

active:

T θk,t ≥ θk,t Tlow,k, (13)

T θk,t ≤ θk,t Tup,k ∀ k ∈ {0, ..., nint − 1}, ∀ t ∈ T (14)
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The mean network temperature is then the sum of all variables Tθ
k,t:

T netw,t =

nint−1∑
k=0

T θk,t ∀ t ∈ T (15)

2.2.4. Heat losses

Heat losses of the network depend linearly on the temperature difference

between network fluid and the surrounding soil: The heat losses of the warm

pipe Q̇loss,wp,t are

Q̇loss,wp,t = (kA)netw(Tnetw,w,t − Tsoil,t) ∀ t ∈ T (16)

and of the cold pipe

Q̇loss,cp,t = (kA)netw(Tsoil,t − Tnetw,c,t) ∀ t ∈ T (17)

The heat loss coefficient (kA)netw and the soil temperature Tsoil,t are based

on the case study presented in [32].

2.2.5. Coefficient of performance and direct cooling

The COPs of heat pumps and chillers are calculated for each time step

t and each network temperature interval k prior to the optimization (calcu-

lation according to [32] and [35]). For a heat pump or a chiller, the energy

balance is

Q̇t =

nint−1∑
k=0

[
COPk,t θk,t

]
Pt (18)

where Q̇t denotes the device’s heating or cooling power and Pt the electric

power consumption. The product is linearized by introducing an auxiliary
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variable P θ
k,t [33]. If the interval k is active, P θ

k,t equals the electric power con-

sumed by the component Pt, otherwise it is 0. Thus, Eq. (18) is reformulated

as

Q̇t =

nint−1∑
k=0

[
COPk,t P

θ
k,t

]
∀ t ∈ T (19)

The auxiliary variable P θ
k,t is constrained by

P θ
k,t ≤ θk,t MP, (20)

P θ
k,t ≤ Pt, (21)

P θ
k,t ≥ Pt − (1− θk,t) MP

∀ k ∈ {0, ..., nint − 1}, ∀ t ∈ T .
(22)

2.2.6. Direct cooling

The network temperature determines if direct cooling (DRC) in build-

ings is possible. Direct cooling is realized with a heat exchanger which uses

the cold network pipe to cool the building’s cooling circuit without electric

power. The binary variable yDRC,b,t is introduced to indicate if the network

temperature is low enough for direct cooling to take place. Depending on the

temperature difference between warm and cold pipe (∆Tnetw) and the tem-

perature difference of supply and return temperature of the building’s cooling

circuit (Tc,return,b,t−Tc,supply,b,t), the pinch is either on the cold or on the warm

side of the heat exchanger. Therefore, if Tc,return,b,t − Tc,supply,b,t ≥ ∆Tnetw

holds, the constraints

Tnetw,c,t + ∆Tmin − Tc,supply,b,t ≤(1− yDRC,b,t)MDRC,b

∀ t ∈ T , b ∈ B
(23)
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are added to the model, otherwise the constraints

Tnetw,h,t + ∆Tmin − Tc,return,b,t ≤(1− yDRC,b,t)MDRC,b

∀ t ∈ T , b ∈ B
(24)

are used. Here, ∆Tmin is the minimum temperature difference across the heat

exchanger and MDRC,b is a big-M coefficient [36]. Eqs. (23) and (24) force

the binary variable yDRC,b,t to 1 if direct cooling can be used. Eq. (25) limits

the cooling power to the rated power of the heat exchanger (for yDRC,b,t = 1)

and for yDRC,b,t = 0 the cooling power is 0:

Q̇c,DRC,b,t ≤ yDRC,b,t Qnom
c,DRC,b ∀ t ∈ T (25)

2.2.7. Storage and network temperature

Excess heat from buildings or heat generated in the EH can be used to

increase the temperature of the network. The mean network temperature of

two consecutive time steps (T netw,t and T netw,t−1) are connected by

T netw,t = T netw,t−1 + ∆Tt ∀ t ∈ T : t 6= t0 (26)

in which ∆Tt denotes the temperature increase. The ACC is thermally and

hydraulically coupled with the network. As modeled in [5], the ACC is op-

erated as passive balancing unit in the following way: For balancing residual

network demands of the buildings, in the first stage, the ACC is used to

provide heating or cooling power. In a second stage, when the ACC is fully

charged (water of the ACC is at temperature of the warm pipe) or fully

discharged (water is at temperature of cold pipe), the temperature of the

network and the ACC can be raised or lowered. The thermal power for in-

creasing or lowering the temperature of the water mass in the network and
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the ACC is

Q̇netw,t = ρW (Vnetw + VACC) cW ∆Tt
1

∆tt
∀ t ∈ T (27)

Q̇netw,t can take positive and negative values and is linked with the energy

balance in Eq. (3). ρW and cW denote the density and heat capacity of water.

The water volume in the network (Vnetw) and in the ACC (VACC) are model

parameters. For modeling the ACC’s operation strategy, two binary variables

are introduced: yinc,t can be become 1 if the mean network temperature is

increased, while ydec,t can become 1 if the mean network temperature is

decreased. The network temperature change ∆Tt is linked with the binary

decision variables by

∆Tt ≤ yinc,t MT, (28)

∆Tt ≥ −ydec,t MT ∀ t ∈ T (29)

with a sufficiently large big-M coefficient (MT = Tmax
netw,w − Tmin

netw,c) [36]. The

binary variables are linked with the ACC’s state of charge by Eqs. (30)

and (31). yinc,t can only take the value 1 if the ACC’s storage level is at

maximum in t and in t− 1:

2 Scap
ACC yinc,t ≤SACC,t + SACC,t−1 ∀ t ∈ T : t 6= t0 (30)

Accordingly, ydec,t can only take the value 1 if the ACC is fully discharged in

t and in t− 1:

2 Scap
ACC (1− ydec,t) ≥ SACC,t + SACC,t−1 ∀ t ∈ T : t 6= t0 (31)

2.2.8. Free-floating network temperature operation (reference case)

In order to evaluate the performance of the optimized temperature oper-

ation, a free-floating temperature operation (as described in [23] and [24]) is

19



investigated as a reference. In the free-floating temperature operation, the

network temperature is only driven by residual heating and cooling demands.

Only, if the network temperature reaches an upper or lower limit (Tmin
netw,c =

6 ◦C, Tmax
netw,w = 40 ◦C), the network is heated or cooled which is ensured by

additional constraints in the model. In the free-floating temperature opera-

tion, the same components are used in the EH and building energy systems

and, in particular, direct cooling is possible. A performance comparison be-

tween the free-floating temperature operation and the optimized temperature

operation is presented in Section 4.4.

2.2.9. Model limitations

Relevant model limitations result from the spatial resolution of the model:

The water in the warm and cold pipe of the network are assumed as ideally

mixed water volumes (as described by Leśko et al. [28]) and no hydraulic

limitations of the network are considered. Thus, residual building demands

can be balanced instantaneously within the duration of a time step and in-

dependently of their location in the district. This assumption is justified for

small networks and large time steps, i.e. the network fluid can flow from one

building to all other buildings within one time step.

In addition, a constant temperature difference between warm and cold

pipe is assumed like in the model by Prasanna et al. [19]. For a system with

temperature controlled heat pumps and chillers, this assumption appears

to be valid. Even if the temperature difference in the real system is not

exactly constant, this primarily affects the hydraulic states of the network,

i.e. mass flows and pumping power. Only in the second place, it leads to

a decline of accuracy of the COP and heat loss estimation of the model.
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Moreover, a perfect temperature stratification of the fluid in the ACC is

assumed and heat losses are neglected. An operation strategy of the ACC is

prescribed in the model (in accordance to [5]): It is ensured that the ACC

is fully charged (or discharged) before the network temperature can rise (or

drop). In addition, all technologies are modeled with a low level of detail,

e.g. part-load limitations, part-load efficiencies and minimum down times

are not considered. Lastly, the optimization aims at minimizing the total

operational costs of the entire energy supply system. However, in practice,

the operator of the energy hub and thermal network may differ from the

operators of the building energy systems. In this case, from the individual

operator’s perspective different network temperatures would be considered

cost-optimal: In winter, for example, the buildings’ operator would prefer

high network temperatures (to achieve high heat pump COPs) while the

network operator prefers low network temperatures.

3. Use case

In this section, the case study and the investigated scenarios are pre-

sented. Section 3.1 provides a brief description of the case study. The in-

stalled generation and storage capacities in the assumed 5GDHC system are

presented in Section 3.2. Section 3.3 introduces the investigated scenarios.

3.1. Use case description

The use case is a German research campus for which 17 buildings are

considered including laboratories, office buildings, two data centers and a

canteen. For the heating systems of the buildings, a required supply tem-

perature of 60 ◦C is assumed and for cooling 16 ◦C. A detailed description of
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the use case is presented in [32]. Currently, no 5GDHC network exists on

the research campus but the heating and cooling demands appear to be a

realistic use case for a 5GDHC network and therefore the district is used in

this study. The total heating demand of all buildings is 6.36 GWh with a

peak heating demand of 2.01 MW and the total cooling demand is 10.04 GWh

with a peak cooling demand of 2.42 MW. Fig. 3 shows the annual time series

of the cumulated heating and cooling demands. In the case study, the elec-

tricity supply price is assumed 0.1523 EUR/kWh [37] and the feed-in revenue

0.085 EUR/kWh [38]. Energy conversion efficiencies as well as the weather

data used in the case study are based on [32].
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Figure 3: Cumulated heating (red) and cooling demands (blue) of all 17 buildings. January,

March and July are investigated in the case study. Illustration based on [32].

3.2. Energy system

Since on the research campus no 5GDHC network exists, for all buildings

and the EH, the installed capacities of all generation and storage technologies
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have to be assumed. The capacities are calculated with a design optimization

approach based on a model presented in [32]. In the EH, an ASHP and a

compression chiller are installed with a rated heating and cooling capacity

of 1.13 MWth and 2.51 MWth, respectively. The installed peak power of PV

modules is assumed 1.02 MWp. The ACC has a tank volume of 95.4 m3

which equals a storage capacity of 0.89 MWh. In the building energy systems,

compression chillers and heat exchangers for direct cooling are installed with

a thermal capacity of 2.88 MWth and 1.98 MWth, respectively. For heating,

the building energy systems comprise heat pumps with a cumulated thermal

power of 1.64 MWth, electric boilers with 0.77 MWth and thermal energy

storages with a cumulated capacity of 2.02 MWh.

For the 5GDHC network in this case study, the assumed topology and

design has been adopted from [32]: The network length is 1.3 km, the mini-

mum pipe diameter 55 mm and the maximum diameter 141 mm. The water

volume in the pipes is 10.3 m3 and the (kA)netw-value 3.7 kW/K. In the case

study, a maximal network temperature of Tmax
netw,w=40 ◦C and a minimum net-

work temperature of Tmin
netw,c=6 ◦C are considered. The difference between the

warm and cold pipe is ∆Tnetw=8 K. The temperature range between the max-

imum mean network temperature (36 ◦C) and the minimum mean network

temperature (10 ◦C) is subdivided into 4 intervals.

3.3. Investigated scenarios

Two energy system configurations (OPT-DRC and OPT) are investi-

gated: In the configuration OPT-DRC, compression chillers and direct cool-

ing are enabled for the cooling system in buildings. In the scenario OPT,

only compression chillers are enabled, while direct cooling is not available.
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The investigation of two scenarios is necessary since the optimal network

temperature substantially depends on whether direct cooling in buildings is

possible or not.

In this work, three representative months are selected based on their

heating and cooling demand profiles. The heating and cooling demands, the

demand ratio and the demand overlap coefficient [39] (definitions provided in

Appendix A) of the three months are shown in Table 1. January is chosen as

the month with the highest demand ratio indicating that heating demands

dominate. March is chosen as a month with alternating demands. The

demand ratio is close to 0 and a large heating and cooling demand overlap

is observed. In July, the cooling demands dominate and the peak cooling

demand is observed. The cumulated demand profiles are depicted in Fig. 3.

Table 1: Total monthly heating and cooling demands, demand ratio and demand overlap

coefficient. For the case study, a month with dominating heating demand (January), a

month with balanced heating and cooling demands (March) and a month with dominating

cooling demands (July) are investigated.

Month Heating Cooling Demand Demand overlap

demand demand ratio coefficient [39]

January 991.0 MWh 603.5 MWh 0.24 0.75

March 789.2 MWh 691.3 MWh 0.07 0.84

July 187.3 MWh 1119.8 MWh −0.71 0.29

The optimization is repeatedly executed in a rolling horizon framework.

In this study, a control horizon of 6 h (6 time steps in hourly resolution)

and an overlap horizon (foresight) of 36 h with 6-hourly resolution is chosen.

The temporal aggregation is based on a downsampling approach described
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by Cao et al. [40].

4. Results

In this section, the results of the system configurations OPT-DRC and

OPT (optimized temperature with and without direct cooling) are presented.

The mean computing time for optimizing one control interval (6 hours) was

in all scenarios less than 5 minutes and the computing time for one month

was less than 10 hours. Therefore, the model is real-time capable and can be

employed in a model predictive control.

4.1. Operational costs

The operational costs only consist of electricity costs. The monthly costs

are listed for January, March and July in Table 2. The highest operational

costs are observed in January due to two reasons: Firstly, the heating de-

mands dominate and substantially outbalance the low cooling demands. Cov-

ering heating demands is in general more cost-intensive than covering cooling

demands as the heat pump COP is lower than the chiller COP. Secondly, less

PV power is generated in January due to the lower solar radiation. This in-

creases the electricity imported from the electricity grid and reduces feed-in

revenues. The system configuration with direct cooling in buildings (OPT)

shows lower costs for all three months. However, the cost difference strongly

depends on the month: In January, the OPT-DRC configuration results in

cost savings of only 9.8 %. In July, the cost savings are substantially higher

(57.7 %). This indicates that direct cooling is advantageous during months

with dominating cooling demands. This effect will be explained in more

detail by analyzing the network temperature profiles in Section 4.2.
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Table 2: Operational costs for the investigated months.

Month OPT-DRC (EUR) OPT (EUR)

January 36,984 41,009

March 17,036 21,681

July 7,662 18,113

4.2. Optimal network temperature

The optimized network temperature profile of configuration OPT-DRC

is illustrated in Fig. 4. In all months, the network temperature is below the

threshold temperature of 14 ◦C under which direct cooling in data centers is

possible. In case of high cooling demands, the network temperature decreases

even below the direct cooling threshold temperature of the other buildings

(10 ◦C). In March, the observed temperature fluctuations mainly result from

temporal balancing of residual heating and cooling demands using the ther-

mal inertia of the network and ACC. In July, the fluctuations result from

the intermittent PV power generation: In times of high PV generation, the

temperature of the network and ACC is decreased by an enforced operation

of the chiller in the EH. In a subsequent period of low PV generation, the

operation of the chiller can be reduced and the temperature of the network

and ACC can rise again.

In general, the water mass in the network and the ACC serves different

functions in configuration OPT-DRC: During periods with frequently fluc-

tuating heating-to-cooling demand ratios in March, the thermal inertia of

the network and ACC is used to balance out residual heating with residual

cooling demands over time. In periods with a uniform demand ratio in July,
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the network and ACC is predominantly used to increase the onsite utiliza-

tion rate of PV power. As can be seen from Fig. 4, the thermal inertia of

the network and ACC only induce minor fluctuations to an overall constant

network temperature level.
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Figure 4: Temperature operation profiles of configuration OPT-DRC (optimized temper-

ature, chillers and direct cooling enabled) for January, March and July.

The network temperatures in scenario OPT are shown in Fig. 5. In Jan-

uary, the mean network temperature remains mostly constant at 27 ◦C in the

warm pipe and 19 ◦C in the cold pipe. Only three times, the temperature in

the warm pipe rises above 30 ◦C which is caused by a temporary increase of

the cooling demand.

In March, the warm pipe temperature fluctuates around 27 ◦C as well.
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However, the fluctuations are larger than in January: Firstly, the COPs of the

heat pump and chiller in the EH experience a higher air temperature variation

in spring with distinctive day-night cycles. Secondly, the heating-to-cooling

demand ratio shows larger fluctuations which cause larger fluctuation of the

optimal network temperature.

In July, the optimal temperature in the warm pipe is on average slightly

higher (33.5 ◦C). This is can be explained by the heat dissipation to the

ground which reduces the amount of excess heat that has to be removed in

the EH. In July, the heat flow to the ground reduces the residual demand by

about 5 %. Moreover, the COP of the heat pumps in buildings is increased

with high network temperatures. The effect of the network temperature on

the performance of the chillers in buildings and in the EH cancel each other

out to a large extent: High network temperatures reduce the COP of the

building chillers, but at the same time, increase the COP of the chiller in the

EH.

The comparison of the configurations OPT-DRC and OPT shows that

operating the network at low temperatures and thus enable direct cooling is

advantageous, even though this leads to lower COPs of the components in

buildings and EH. This effect is quantified and analyzed in more detail in

Section 4.3.

4.3. Electricity consumption

In Fig. 6, the electricity balances for both configurations are illustrated.

The left bar shows the electricity imported from the grid as well as the PV

power generation. On the right, the electricity consumption by electrically-

driven system components in the buildings and the EH is displayed. The
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Figure 5: Temperature operation profiles of configuration OPT (optimized temperature,

direct cooling disabled) for January, March and July.

electricity demand of all system components is indicated by a dashed line.

The PV generation increases substantially from January to July and ac-

cordingly the electricity imported from the power grid decreases. The total

electricity demand (dashed line) decreases from January to March but slightly

increases from March to July. The reason for low operational costs in March

is that large proportions of heating and cooling demands are balanced which

substantially reduces the electricity consumption: Although the heating de-

mand decreases from January to March by only 20 % and the cooling demand

even rises by 15 %, the electricity consumption of all electrically-driven com-

ponents decreases by 31 % (OPT-DRC) and 26 % (OPT).

29



The electricity demand of the system components differs between winter

and summer months and strongly depends on the heating-to-cooling demand

ratio: In January, the heat generation in buildings (heat pumps and electric

boilers) is the largest proportion (80 % in OPT-DRC and 56 % in OPT).

A large share of cooling demands are balanced in the system. In scenario

OPT, the cold generation by chillers in buildings also takes a substantial

proportion (23 %). In July, the electricity demand of chillers dominates and

heating demands are mostly balanced in the system: In configuration OPT-

DRC, most of the electricity is consumed by the chiller in the EH (67 %).

When direct cooling is not enabled (OPT), the electricity demand of chillers

in buildings causes 47 % and the central chiller in the EH 43 %. As a result,

the total electricity demand of chillers in July with configuration OPT is

substantially larger (OPT: 240 MWh, OPT-DRC: 153 MWh).

4.4. Comparison with free-floating temperature operation

In this section, the performance of the optimized temperature operation

is compared to the free-floating temperature operation strategy, as described

in Section 2.2.8. In Fig. 7, the temperature profile of the free-floating temper-

ature operation is depicted. In January, the network temperatures remain at

the lower temperature threshold (6 ◦C) most of the time since residual heat-

ing demands dominate. This shows that direct cooling is also possible with

the free-floating temperature operation in months with dominating heating

demands. At two occasions (10.01. and 16.01.), residual cooling demands ex-

ceed residual heating demands and the temperature of the network reaches

the upper temperature limit (40 ◦C). In March, the network temperatures

fluctuate between lower and upper temperature limit due to the frequently
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Figure 6: Electricity demand for January, March and July for both configurations OPT-

DRC (chillers and direct cooling enabled) and OPT (direct cooling disabled). In all sub-
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alternating residual heating and cooling demands. A constant network tem-

perature is observed in July, since residual cooling dominate throughout the

entire month. As a result, direct cooling is not possible during this period.

The optimized temperature operation achieves substantially lower oper-

ational costs than the free-floating temperature operation (FF) for two of

the three months: In January, the cost savings of the optimized tempera-

ture operation (OPT-DRC) are 0.01 % and therefore negligible (operational

costs FF: 36,989 EUR). In March, the network temperature optimization re-

sults in cost savings of 9.8 % compared to the free-floating approach (FF:

18,897 EUR) and in July 59.7 % (FF: 19,030 EUR). The large cost savings in

July result from the high network temperature in the free-floating operation

at which direct cooling in buildings cannot be used. As a result, all cooling

demands in buildings are covered by chillers which increases the electricity

demand and also increases the residual cooling demand to be covered by the

EH.

4.5. Comparison with constant network temperatures

In this section, the operational costs of the optimized network temper-

ature profiles are compared with constant network temperatures. For this

comparison, 3 temperature pairs for the temperature in the warm and cold

pipe are selected: 6 ◦C/14 ◦C, 14 ◦C/22 ◦C and 22 ◦C/30 ◦C. For the compari-

son, the network temperatures are fixed to the respective values by additional

constraints in the optimization model. The optimization is run for the three

months January, March and July as well as the two configurations OPT and

OPT-DRC. The resulting operational costs are listed in Table 3. For all
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Figure 7: Temperature operation profiles of free-floating temperature operation for Jan-

uary, March and July.

months and configurations, the operational costs are higher with constant

temperature profiles than with optimized temperature profiles. This result is

expected since the solution space of the optimization is restricted by adding

additional constraints to the MILP. The optimization OPT/July with tem-

peratures 6 ◦C/14 ◦C does not have a feasible solution (shortage of generation

capacity). Across all optimizations, the cost increase ranges between 0.7 %

and 143 %. In all months of configuration OPT, the results of the temper-

ature pair 22 ◦C/30 ◦C are only slightly higher than the optimized profiles.

This indicates that a constant temperature can lead to low operational costs

as well. However, this is only the case for certain temperature pairs and
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configurations. In general, in at least one season (summer or winter), a fix

temperature leads to substantially higher operational costs compared to a

flexible temperature optimization.

Table 3: Operational costs (in kEUR) for the constant temperatures profiles and the

optimized temperature profiles (corresponding to Table 2).

Configu- Month Optimized Constant temperature profile (kEUR)

ration profile (kEUR) 6/14 ◦C 14/22 ◦C 22/30 ◦C

OPT January 41.0 46.0 +12 % 43.3 +5.6 % 42.0 +2.4 %

OPT March 21.7 29.8 +37 % 25.3 +17 % 22.4 +3.3 %

OPT July 18.1 — 21.6 +19 % 18.6 +2.7 %

OPT-DRC January 37.0 37.2 +0.7 % 37.5 +1.4 % 42.0 +13 %

OPT-DRC March 17.0 18.4 +7.9 % 17.4 +2.4 % 22.4 +32 %

OPT-DRC July 7.7 9.0 +17 % 9.0 +17 % 18.6 +143 %

5. Conclusions

In this paper, a mathematical model for the operation optimization of

5GDHC networks is presented. The model proves to be real-time capable

and can therefore be used in a model predictive control. The optimization

model is applied to a case study with 17 buildings. The cost-optimal network

temperature depends on numerous factors with partially opposing influence,

of which the following three are the most important:

• The system configuration, i.e. installed technologies in buildings and

energy hub, has a strong impact on the optimal network temperature: If

heat exchangers for direct cooling are available in buildings, the optimal
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network temperature is low enough for the building to be cooled directly

with the cold pipe.

• If direct cooling is not possible, the heating-to-cooling demand ratio

strongly influences the optimal network temperature.

• Heat losses or gains of the pipe network as well as heat or cold gen-

eration efficiencies in the energy hub moderately influence the optimal

network temperature.

The thermal inertia of the network and the central thermal storage sup-

port the demand balancing and increase the onsite utilization rate of pho-

tovoltaics. However, the impact of the network inertia and a medium-sized

thermal storage (which balances fluctuations over a day) on the optimal net-

work temperature is small. However, these results cannot be generalized

for other system configurations, which use long-term storages with larger

volumes or different storage types, like aquifer storages.

The case study shows that direct cooling in buildings is crucial in order

to achieve low operational costs. The optimization tends to keep the network

temperature below the threshold for direct cooling which results in large cost

reductions compared to a free-floating temperature operation, especially in

summer months. Even during periods with only small cooling demands, the

benefit of direct cooling justifies low network temperatures which result in

lower coefficients of performance of heat pumps in buildings. In all scenarios,

the optimization model achieves lower operational costs than the operation

with constant network temperatures. However, the cost savings strongly

depend on the configuration, the selected constant network temperatures
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and the season of the year.

In summary, the results show that the developed MILP model is suited

for the optimal control of the network temperature of a 5GDHC system. In

addition, the model can be used to derive improvements for existing heuris-

tic control approaches, like the free-floating temperature control: If heat

exchangers for direct cooling are available in buildings, the operation strat-

egy should give high priority on limiting the network temperature during

times with cooling demands. If direct cooling is not possible in buildings,

high network temperatures during summer are beneficial since excess heat is

dissipated to the ground.
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7. Nomenclature

Abbreviations

5GDHC 5th Generation District Heating and Cooling

ACC Accumulator Tank

ASHP Air source heat pump

BES Building Energy System

CC Compression Chiller

COP Coefficient of Performance

DOC Demand Overlap Coefficient

DRC Direct Cooling

EB Electric Boiler

EH Energy Hub

FF Free-floating temperature control

HP Heat Pump

MILP Mixed-Integer Linear Program

MINLP Mixed-Integer Nonlinear Program

OPT Optimized temperature control (no DRC)

OPT-DRC Optimized temperature control (with DRC)

PV Photovoltaics

TES Thermal Energy Storage

Indices and Sets

b ∈ B buildings

t ∈ T time steps

k set of temperature intervals

Variables
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∆T Temperature difference

Θ Binary variable (temperature interval)

C Total costs

P Electric power

Q Thermal energy

Q̇ Thermal power

S Storage level

T Temperature

T Mean temperature

y Binary variable (operation on/off)

Parameters

∆t Duration of time step

η Efficiency

ρ Density

c Specific heat capacity

kA Heat loss coefficient

m Mass

M Big-M

p Price

R Demand ratio

V Volume

Subscripts and Superscripts
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c cooling

cap capacity

cp cold pipe

dec decrease

dem demand

el electric

feed-in feed-in

grid grid

h heating

inc increase

int interval

loss network loss

low lower

max maximum

min minimum

netw network

nom nominal capacity

op operational

res residual

soil soil

sup supply

tot total

up upper

w warm

W water

wp warm pipe
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Appendix A. Demand metrics

The heating-to-cooling demand ratio R indicates whether heating de-

mands Qtot
h,dem or cooling demands Qtot

c,dem dominate [39]:

R =
Qtot

h,dem −Qtot
c,dem

Qtot
h,dem + Qtot

c,dem

(A.1)

R becomes −1 if there is only cooling demand and +1 if there is only heat-

ing demand. For R = 0 the total heating demand equals the total cooling

demand.

The demand overlap coefficient DOC describes the overlap of heating and

cooling demand profiles, and thus the theoretical demand balancing potential

in 5GDHC networks [39]. The DOC ranges between 0 (no overlap) and 1

(heating and cooling demand profiles identical) and is defined as

DOC =
2 ·
∑

t∈T min
{
Q̇h,dem,t, Q̇c,dem,t

}
∑

t∈T

(
Q̇h,dem,t + Q̇c,dem,t

) (A.2)

with Q̇h,dem,t/Q̇c,dem,t as the heating/cooling demand at time step t.

Appendix B. Additional model constraints

All model constraints not mentioned in the main text are listed in the

following. These constraints are adapted from the formulation presented in

[32].

40



Appendix B.1. Building energy system

The heating demand Q̇h,dem,b,t equals the heat generation of the heat

pump, electric boiler and the net thermal power of the heat storage:

Q̇h,HP,b,t + Q̇h,EB,b,t + Q̇dch
h,TES,b,t =

Q̇h,dem,b,t + Q̇ch
h,TES,b,t ∀ t ∈ T , b ∈ B (B.1)

Similarly, the cold generation of the compression chiller and direct cooling

equals the cooling demand:

Q̇c,CC,b,t + Q̇c,DRC,b,t = Q̇c,dem,b,t ∀ t ∈ T , b ∈ B (B.2)

The thermal output of electric boilers is linked with the electricity con-

sumption by a constant thermal efficiency:

Q̇h,EB,b,t = PEB,b,t ηEB ∀ t ∈ T , b ∈ B (B.3)

The thermal output of each unit is limited by its rated power:

Q̇h,k,b,t ≤ Q̇nom
h,u,b ∀ u ∈ {HP,EB}, t ∈ T , b ∈ B (B.4)

Q̇c,k,b,t ≤ Q̇nom
c,u,b ∀ u ∈ {CC,DRC}, t ∈ T , b ∈ B (B.5)

The state of charge of the thermal energy storage STES,b,t is limited by

the nominal storage capacity:

STES,b,t ≤ Scap
TES,b ∀ t ∈ T , b ∈ B (B.6)

The state of charge of the building heat storage is connected with the state
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of charge of the previous time step by

STES,b,t = STES,b,t−1(1− φTES,loss)

+ ηchTESQ̇
ch
h,TES,b,t −

Q̇dch
h,TES,b,t

ηdchTES

∀ t ∈ T : t 6= t0, b ∈ B (B.7)

Appendix B.2. Energy hub

The thermal output of the air source heat pump and chiller in the EH is

limited by the rated power:

Q̇h,ASHP,t ≤ Q̇nom
h,ASHP ∀ t ∈ T (B.8)

Q̇c,CC,t ≤ Q̇nom
c,CC ∀ t ∈ T (B.9)

PV power is the product of the global tilted irradiance, module area and

electric efficiency:

PPV = Gsol APV ηPV,t ∀ t ∈ T (B.10)

The state of charge of the ACC is limited by the storage capacity:

SACC,t ≤ Scap
ACC ∀ t ∈ T (B.11)
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